

Exploring new radar constraints on cloud microphysical uncertainty

Marcus van Lier-Walqui CCSR, Columbia Univsersity & NASA/GISS

"New" radar observations

- * Polarimetric Radar
 - * Not "new" (e.g. Seliga & Bringi 1976)
 - * Information about shape, phase, habit, particle size distribution of hydrometeors
 - * Area of active research to determine information relevant to micorphysics

- * Doppler Spectra
 - * Also not new (fundamental derived variable from radar)
 - * Oth moment: Reflectivity, 1st moment: mean Doppler velocity...
 - * Vertically pointing: gives information about PSD of precip & air motion.

What questions can polarimetric radar help with?

- * What are the characteristics of deep convective updrafts (in mid-latitudes and tropics)?
- * Cloud resolving models tend to overestimate w (Varble et al. 2014)
- * Multi-Doppler retrievals are far from perfect, can polarimetric radar fill in the gaps?
 - * www.giss.nasa.gov/staff/mvanlier-walqui/ wind pol 520.html

Polarimetric radar

- Transmit both horizontally and vertically polarized waves
- Compare returned horizontal and vertical signals
- Provides information on shape/cant/phase, etc.
- NWS NEXRAD radar network completed polarimetric upgrade this year

Polarimetric variables – ZDR

Differential reflectivity

$$Z_{DR} = 10\log_{10}(z_{hh}/z_{vv})$$

- Sensitive to oblateness of particles : rain size
- Insensitive to concentration
- Strongly affected by attenuation

From Wakimoto & Bringi (Monthly Weather Review 1988).

Polarimetric variables – Φ_{DP} & K_{DP}

Differential Phase (Φ_{DP}) & Specific Differential Phase (K_{DP})

- Difference in phase between horizontal and vertical pulses
- Similar in some ways to ZDR
- Insensitive to attenuation
- Sensitive to concentration
- $K_{DP} = \text{range derivative of}$ Φ_{DP}

Polarimetric variables – Φ_{DP} & K_{DP}

Differential Phase (Φ_{DP}) & Specific Differential Phase (K_{DP})

- Difference in phase between horizontal and vertical pulses
- Similar in some ways to ZDR
- Insensitive to attenuation
- Sensitive to concentration
- $K_{DP}=$ range derivative of Φ_{DP}

Polarimetric variables – Summary

Table 1. Attributes of polarimetric variables (for 5- and 10-cm wavelengths).

Attribute	Independent of absolute radar	Immune to propagation effects calibration	Immune to noise bias	Used for quantitative estimation	Independent of concen- tration
$Z_{_h}$	no	no	no	yes	no
$Z_{\scriptscriptstyle DR}$	yes	no	no	yes	yes
K_{DP}	yes	yes	yes	yes	no
$ ho_{_{hv}}$	yes	yes	no	no	yes
δ	yes	no	yes	no	yes
LDR	yes	no	no	no	yes

KDP & ZDR columns

KDP column no. 1; May 20 2011 -- 10:18:40.

Investigation of KDP columns in deep convective updrafts

- * Midlatitude Continental Convective Clouds Experiment (MC3E): OK, Late Spring 2011
- * Analyze KDP observed above the environmental melting level as proxy of deep convective updraft
- * Compare with multi-Doppler winds, lightning flash rate, ZDR, precipitation estimates
- * Co-authors: Ann Fridlind, Andrew Ackerman, Scott Collis, Jonathan Helmus, Kirk North, Pavlos Kollias, Don MacGorman, Derek Posselt

Identifying KDP columns

Updrafts vs. KDP column volume

3-Doppler Updraft & C-SAPR K_{DP} statistics, April 25, 2011

KDP columns and Intense precipitation

C-SAPR K_{DP} & Rainrate statistics, April 25, 2011

KDP columns and lightning flash rate

Also: Spatial statistics of updraft features

Nearest-neighbor distances

Summary:

- * Polarimetric radar variables such as KDP provide valuable information related to deep convective updrafts; information that is necessary to constrain model behavior
- * Still to do: Detailed comparison with modeled results using bin and bulk microphysical parameterization schemes and a polarimetric foward operator

Profiling radar Doppler spectra

- * In-situ observations are available to constrain cloud-top ice properties in stratiform precipitation associated with deep convection:
 - * http://www.giss.nasa.gov/staff/mvanlier-walqui/kvnx citation 20110520.html
 - * http://www.giss.nasa.gov/staff/mvanlier-walqui/nexrad gridplots/nex 520 lev07.html
- * Microphysics of aggregation of ice largely unconstrained (ie. ice-ice sticking efficiency)

Ice sticking uncertainty

MC3E

Doppler spectra & the Bayesian aproach

- * Doppler spectra from S- and K-band profiling radars provide detailed information on vertical variability of ice (& ice sticking efficiency)
- * We can simulate these conditions well -> let the observations directly constrain the microphysics
- * We would like to consider all sources of uncertainty & multivariate uncertainty -> Bayes
- * Coauthors: Ann Fridlind, Andrew Ackerman, Christopher Williams, Gregory McFarquhar, Wei Wu, Xiquan Dong, Jingyu Wang, Alexei Korolev, Alice Grandin, Walter Strapp

Radar Doppler Spectra

Radar Doppler Spectra

S-band vs. KAZR

ANALYSIS BY C. WILLIAMS

Markov chain Monte-Carlo (MCMC)

General idea:

- Use a modified random walk (a Markov chain) to sample the parameter space
- Samples in chain are draws from the target distribution
- Random walk can be Gaussian or uniform (or anything else)
- Each new sample depends only on the previous sample (Markovian property).
- Each new sample is accepted or rejected depending on probabilities of the current & proposal samples:

$$P(\mathbf{x}_{prop}|\mathbf{x}_{curr}) = min[1, P(\mathbf{x}_{prop})/P(\mathbf{x}_{curr})]$$
 (1)

-	x(i)
1	1.3

i	x(i)
1	1.3

i	x(i)
1	1.3

i	x(i)
1	1.3

i	x(i)
1	1.3
2	2.0

i	x(i)
1	1.3
2	2.0

i	x(i)
1	1.3
2	2.0

i	x(i)
1	1.3
2	2.0

i	x(i)
1	1.3
2	2.0
3	2.0

i	x(i)
1	1.3
2	2.0
3	2.0

i	×(i)
1	1.3
2	2.0
3	2.0

i	x(i)
1	1.3
2	2.0
3	2.0
4	1.1

Markov Chain Monte Carlo probabilistic sampling

MCMC sampler proposes steps in parameter space, accepting/rejecting according to comparison of model to obs

MCMC results

- * Preliminary results:
 - * constraint only by 0th moment of Doppler spectrum (reflectivity
 - * Perturbed parameters: lce sticking efficiency (global), Total ice mass multiplier (uncertainty in initial ice mass
 - * van Diedenhoven et al2012 ice treatment

MCMC results

- * Preliminary results:
 - * constraint only by 0th moment of Doppler spectrum (reflectivity
 - * Perturbed parameters: lce sticking efficiency (global), Total ice mass multiplier (uncertainty in initial ice mass
 - * Brown & Francis 1995 ice treatment

MCMC results

Temperature-dependent lce sticking efficiency

Summary

- * Radar Doppler spectrum being used in probabilistic (Bayesian) framework to estimate microphysical parameters in the presence of model uncertainty and observational error
- * Ongoing work:
 - * Utilize full Doppler spectrum from KAZR
 - * Robustly estimate temperature-dependence (and other dependence) of ice sticking
 - * Investigate relevance of uncertainty to CRMs and GCMs

KAZR AIR VELOCITY ESTIMATE (DOWNWARD BIASED)

